Suggested solutions for HW2

6.2 QII

One can consider the function given in Section 6.1 Q10
i.e.
$$S(X) = \int X^{2} \sin(\frac{1}{X^{2}})$$
, $X \neq 0$
 $\int 0$, $x = 0$
Indeed, g is differentiable for all $X \in \mathbb{R}$
For $\pi \neq 0$, $S(X) = \pi^{2} \sin(\frac{1}{X^{2}})$ is a product of functions which are
differentiable at \mathcal{R} . Therefore, g is differentiable at $\pi \neq 0$
For $\pi = 0$. Let $\varepsilon > 0$ be given, choose $S = \varepsilon > 0$
Then for any $\pi \in (-S, 0) \cup (0.S)$, we have
 $\left[\frac{g(x) - g(x)}{x - 0} - 0\right] = \left[\frac{\pi^{2} \sin \frac{1}{x^{2}}}{x}\right]$
 $= \left[\chi \sin \frac{1}{x}\right]$
Therefore, g is differentiable for all $\pi \in \mathbb{R}$
In particular, S is differentiable for all $\pi \in \mathbb{R}$
In particular, S is differentiable on $(0, 1)$ and continuous
on $E_{0, 1}$
Since $E_{0, 1}$ is compact, it follows immediately that g is wifermly
continuous on $E_{0, 1}$
To show S' is unbounded on $(0, 1)$ such that $|S'(x)| \geq M$

Choose X= where KEN is sufficiently large such that ~2KT > - M In this case, we have $(\frac{1}{x}) \stackrel{M}{\geq}$ $\cos \frac{1}{x^2} = 1$, $\sin \frac{1}{x^2} = 0$ Then $|S'(x)| = |2\pi \sin \frac{1}{2\pi} - \frac{1}{2\pi} \cos \frac{1}{2\pi}|$ $= 0 - 2\sqrt{2kT}$ = 2 ~2 kT = = > 2. = M 6.2 Q13 Pick any a, b EI such that a < b Since I is an interval, [a,b] < I Note that f is differentiable on I, in particular, f is continuous on [a, b] and differentiable on (a, b) Then by Mean Value Theorem, there exists a point C E (a, b) such that f(b) - f(a) = f'(c)(b-a)Because f'is positive on I, f'(c)>0 and b-a70 It follows that f(b) > f(a), V a < b, a, b \in I

6.3 QI For $\chi \in (\alpha, b)$, $\chi \neq C$, $f(\chi) = \frac{f(\chi)}{g(\chi)} \cdot g(\chi)$ Since g is continuous at C. lim S(R) exists By assumption, $B = \lim_{X \to C} S(X) = 0$, $\lim_{X \to C} \frac{f(X)}{S(X)}$ exists Then A = lim f(x) $= \lim_{\alpha \to c} \left(\frac{f(\alpha)}{s(\alpha)} \cdot g(\alpha) \right)$ $= \left(\lim_{X \to C} \frac{f(X)}{g(X)}\right) \cdot \left(\lim_{X \to C} g(X)\right)$ = 0 6.3 QZ By assumption, A= lim f(x) and B= lim S(x) exist i.e. VE,70, JS,70 s.t. If(x)-AL<E, as o< 1x-CLS, \widehat{U} And 42270, 7 8270 S.t. 13(x)-13 < E2 as 0< 1x-c < 62 $\overline{(2)}$ (i) When AZD and BED Choose E1= A 70, by @ there exists S, 70 S.T. - A < f(x)-A < A whenever or 1x-c1 < d, i.e. $\frac{A}{2} < f(x) < \frac{2}{2} A$ Now given M70, choose OCE2 < 2 i.e. A. 7 M Similarly by (2), one can find \$270 S.C. O<S(x)<E2 as O<1x-C1<52

Now let
$$g = \min \{g_{k}, g_{k}\}$$
 $if O \leq |\pi \cdot C| \leq g$
then $\frac{f(x)}{g(\pi)} > \frac{tA}{c_{k}} > M$
[Hance, $\lim_{\pi \to C} \frac{f(x)}{g(\pi)} = f(x)$
(i)) When $A < O$ and $B = O$
(ii) When $A < O$ and $B = O$
(bose $c_{1} = -\frac{A}{2} > O$, by O there exists $g_{1} > O \leq 1$.
 $\frac{A}{2} \leq f(\pi) - A < -\frac{A}{2}$ whenever $O \leq |\pi \cdot C| < d_{1}$
 $i.e. \frac{A}{2} \leq f(\pi) < \frac{t}{2}A$
Now given $M < O$, choose $O < c_{k} < \frac{A}{2m}$ i.e. $\frac{A}{2c_{k}} < M$
Similarly by (O) , one can find $g_{2} > D \leq t$. $O < g(\pi) < c_{k} < g_{k} < M$
Similarly by (O) , one can find $g_{2} > D \leq t$. $O < g(\pi) < c_{k} < g_{k} < M$
Now let $g = \min \{g_{1}, g_{2}\}$ $if O < |\pi \cdot C| < g$
then $\frac{f(x)}{g(\pi)} < \frac{tA}{c_{k}} < M$
[Hance, $\lim_{\pi \to C} \frac{f(x)}{g(\pi)} = -O$
 $\frac{F(x)}{\pi > C} \frac{f(x)}{g(\pi)} > \min I = (O, +oO)$ has indeterminate form $b - aO$
 $\frac{Then}{\pi > O}$
Then $\lim_{\pi \to O} (\frac{1}{\pi} - \frac{1}{arctanx}) = \lim_{\pi \to O} (\frac{arctanx - X}{Xarctanx})$
 $(By L'Hospitals Pale) = \lim_{\pi > O} (\frac{1}{\pi + arctanx})$

$$= \lim_{\substack{Y \neq Q_{1} \\ Y \neq Q_{2} \\ Y \neq Q_{2} \\ (By L'Hospital's Rule) = \lim_{\substack{Y \neq Q_{1} \\ Y \neq Q_{2} \\ (H \neq X + (HX^{2}) + (HX^{2}) + (HX^{2}) \\ (By L'Hospital's Rule) = \lim_{\substack{Y \neq Q_{1} \\ Y \neq Q_{2} \\ Y \neq Q_{2} \\ (H + X + (HX^{2}) + (HX^{2}) + (HX^{2}) \\ (H + X + (HX^{2}) + (HX^{2}) + (HX^{2}) \\ (H + X + (HX^{2}) + (HX^{2}) + (HX^{2}) \\ (H + X + (HX^{2}) + (HX^{2}) + (HX^{2}) + (HX^{2}) \\ (H + X + (HX^{2}) + ($$

On the other hand, $\frac{tan X}{sec X} = tan X \cdot cos X = sin X$ Then $\lim_{X \to (\frac{\pi}{2})^{-}} \frac{\tan x}{\sec x} = \lim_{X \to (\frac{\pi}{2})^{-}} \frac{\sin x}{x = 1}$